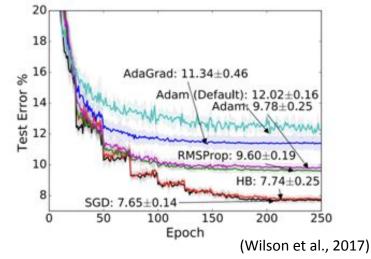
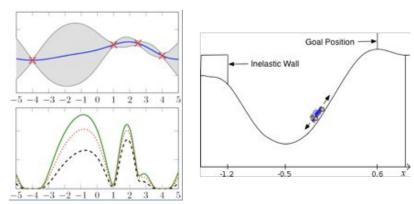
Functional Variational Bayesian Neural Networks

Shengyang Sun*¹, Guodong Zhang*¹, Jiaxin Shi*², Roger Grosse¹
University of Toronto¹ Tsinghua University²

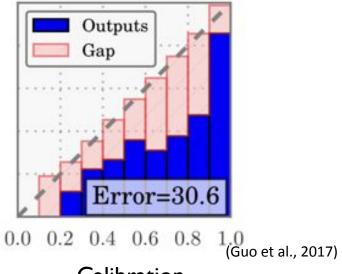
Motivation: Why uncertainty in neural nets?



Generalization



Exploration



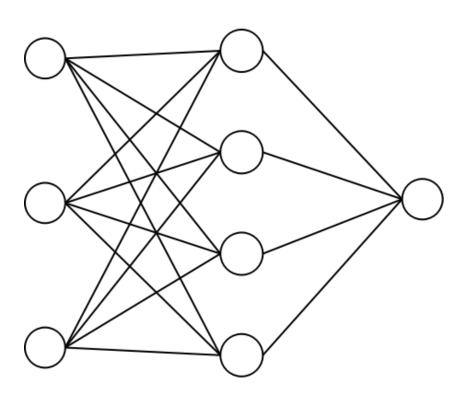
Calibration

(Athalye et al., 2017)

Adversarial Robustness

Background: Bayesian neural networks

Combining Bayesian methods with deep learning models



$$W \sim \mathcal{N}(0, \eta^2)$$

Prior

$$f(x) = NN(x; W)$$

Neural nets

$$y = \mathcal{P}(f(x); \theta)$$

Likelihood

Commonly-used Likelihoods

Regression: $y = f(x) + \epsilon^2, \epsilon \sim \mathcal{N}(0, \sigma^2)$

Classification: $y = \operatorname{softmax}(f(x))$

Background: Bayesian neural networks

ullet Variational Inference fits a q(w) to maximize the Evidence Lower Bound (ELBO)

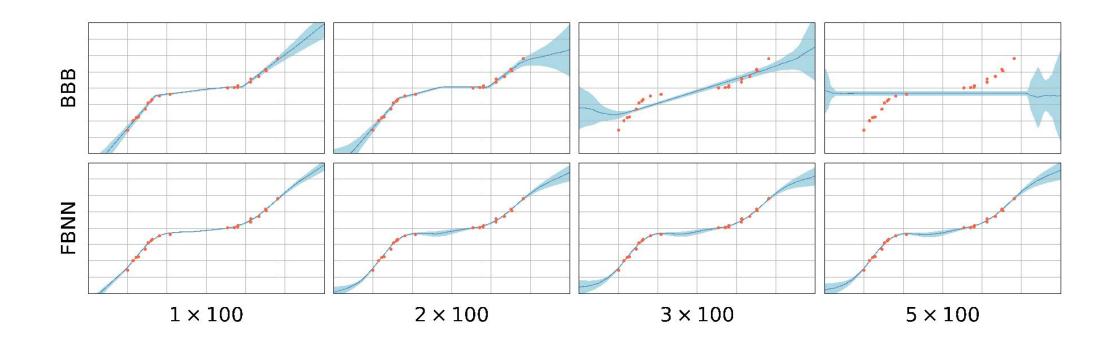
$$\mathcal{L}(q) = \mathbb{E}_q[\log p(y|x, w)] - \text{KL}[q(w)||p(w)]$$

- Fast, stochastic training
- Noisy Backpropagation
- Compact representation of posterior uncertainty

Background: Bayesian neural networks

- Recent Attempts Towards Expressive Posteriors
 - Factorized Gaussian (Blundell et al., 2015)
 - Matrix variate Gaussian (Louizos & Welling, 2016; Sun et al., 2017; Zhang et al., 2017)
 - Normalizing Flow (Louizos & Welling, 2017)
 - Implicit distribution (Shi et al., 2017)
 - SGLD (Wang et al., 2018)
- Is variational posterior the key problem for BNNs?

Mis-Specified Weight-Space Prior



Predictive results for BBB, HMC and FBNN, when varying network sizes.

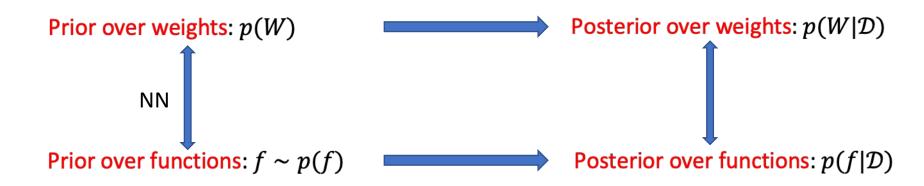
This paper

distribution over functions

- A theorem on KL divergence between two stochastic processes
- Two algorithms for functional variational inference
 - Adversarial
 - Sampling-based
- Functional variational BNNs
 - Reliable uncertainty
 - Sensible Extrapolation
 - Scalability
 - Model-Agnostic

Reinterpreting BNNs as stochastic processes

• Consider the the space of functions $f: \mathcal{X} \to \mathcal{Y}$



• Given dataset $\mathcal{D} = (X^{\mathcal{D}}, y^{\mathcal{D}})$, consider variational inference in f, we get functional ELBO:

$$\mathcal{L}(q) \coloneqq \mathbb{E}_q \left[\log p(y^{\mathcal{D}}|f) \right] - \text{KL}[q(f)||p(f)]$$

p(f): prior process

- Gaussian Process
- Student-t's Process
- Piecewise Constant functions

• ...

q(f): variational stochastic process

- Gaussian Process
- NN with weight stochasticity (BNN)
- NN with node stochasticity (GAN GEN)

• ...

Theorem [Functional KL Divergence]. For two stochastic processes P, Q, the KL divergence is the supremum of marginal KL divergences over all finite subset of inputs $x_{1:n}$

$$KL[P||Q] = \sup_{n, \mathbf{x}_{1:n}} KL[P_{\mathbf{x}_{1:n}}||Q_{\mathbf{x}_{1:n}}].$$

• Example [KL between conditional processes].

$$KL[p(f|\mathcal{D}_{1})||p(f|\mathcal{D}_{2})] = \sup_{n,\mathbf{x}_{1:n}} KL[p(\mathbf{f}^{\mathbf{x}}|\mathcal{D}_{1})||p(\mathbf{f}^{\mathbf{x}}|\mathcal{D}_{2})]$$

$$= \sup_{n,\mathbf{x}_{1:n}} \mathbb{E}_{p(\mathbf{f}^{\mathbf{x}},\mathbf{f}^{D_{1}\cup D_{2}}|\mathcal{D}_{1})} \log \frac{p(\mathbf{f}^{\mathbf{x}},\mathbf{f}^{D_{1}\cup D_{2}}|\mathcal{D}_{1})}{p(\mathbf{f}^{\mathbf{x}},\mathbf{f}^{D_{1}\cup D_{2}}|\mathcal{D}_{2})}$$

$$= \sup_{n,\mathbf{x}_{1:n}} \mathbb{E}_{p(\mathbf{f}^{\mathbf{x}},\mathbf{f}^{D_{1}\cup D_{2}}|\mathcal{D}_{1})} \log \frac{p(\mathbf{f}^{D_{1}\cup D_{2}}|\mathcal{D}_{1})p(\mathbf{f}^{\mathbf{x}}|\mathbf{f}^{D_{1}\cup D_{2}},\mathcal{D}_{1})}{p(\mathbf{f}^{D_{1}\cup D_{2}}|\mathcal{D}_{2})p(\mathbf{f}^{\mathbf{x}}|\mathbf{f}^{D_{1}\cup D_{2}},\mathcal{D}_{2})}$$

$$= \sup_{n,\mathbf{x}_{1:n}} \mathbb{E}_{p(\mathbf{f}^{\mathbf{x}},\mathbf{f}^{D_{1}\cup D_{2}}|\mathcal{D}_{1})} \log \frac{p(\mathbf{f}^{D_{1}\cup D_{2}}|\mathcal{D}_{1})p(\mathbf{f}^{\mathbf{x}}|\mathbf{f}^{D_{1}\cup D_{2}},\mathcal{D}_{2})}{p(\mathbf{f}^{D_{1}\cup D_{2}}|\mathcal{D}_{2})p(\mathbf{f}^{\mathbf{x}}|\mathbf{f}^{D_{1}\cup D_{2}})}$$

$$= KL[p(\mathbf{f}^{D_{1}\cup D_{2}}|\mathcal{D}_{1})||p(\mathbf{f}^{D_{1}\cup D_{2}}|\mathcal{D}_{2})]$$

functional ELBO

$$\mathcal{L}(q) = \mathbb{E}_{q}[\log p(\mathbf{y}^{D}|f)] - \sup_{\mathbf{X}} \text{KL}[q(\mathbf{f}^{\mathbf{X}})||p(\mathbf{f}^{\mathbf{X}})]$$

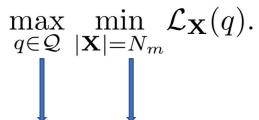
$$= \inf_{\mathbf{X}} \sum_{(\mathbf{x}^{D}, y^{D}) \in \mathcal{D}} \mathbb{E}_{q}[\log p(y^{D}|f(\mathbf{x}^{D}))] - \text{KL}[q(\mathbf{f}^{\mathbf{X}})||p(\mathbf{f}^{\mathbf{X}})]$$

$$:= \inf_{\mathbf{X}} \mathcal{L}_{\mathbf{X}}(q).$$

- where $X = x_{1:n}$ ranges over all finite sets of input locations, termed as *measurement points*.
- Theorem [Lower Bound]. If X contains all training input locations $X^{\mathcal{D}}$,

$$\mathcal{L}_{\mathbf{X}}(q) = \log p(\mathcal{D}) - \mathrm{KL}[q(\mathbf{f}^{\mathbf{X}}) || p(\mathbf{f}^{\mathbf{X}} | \mathcal{D})] \le \log p(\mathcal{D}).$$

- Adversarial Functional Variational Inference
 - Fixed-size measurement points



• Analogy to GANs. Generator Discriminator

- Sampling-Based Functional Variational Inference
 - Auxiliary distribution $c. X^M \sim c.$
 - Subset of training set $X^{\mathcal{D}_s}$ to prevent overfitting.
 - measurement points $X = X^M \cup X^{\mathcal{D}_S}$

$$\max_{q \in \mathcal{Q}} \mathbb{E}_{\mathbf{X}^{M} \sim c} \mathcal{L}_{\mathbf{X}^{M}, \mathbf{X}^{D_{s}}}(q).$$

- Theorem [Consistency]: When both p and q are both Gaussian processes, Q is expressive enough, $\mathcal{D}_s = \mathcal{D}, M > 1$, then we have equivalence:
 - Sampling-based functional variational inference with supp(c) = X attains its optimum.
 - The variational posterior process and the true posterior process are identical.

Background: Spectral Stein Gradient Estimators (Shi et al., 2018)

- Implicit distributions
- Stein's Equality

$$\mathbb{E}_q[\mathbf{h}(\mathbf{x})
abla_{\mathbf{x}} \log q(\mathbf{x})^{\top} +
abla_{\mathbf{x}} \mathbf{h}(\mathbf{x})] = \mathbf{0}.$$

Log density derivative

$$\nabla_{x_i} \log q(\mathbf{x}) = -\sum_{j=1}^{\infty} \left[\mathbb{E}_q \nabla_{x_i} \psi_j(\mathbf{x}) \right] \psi_j(\mathbf{x}),$$

• The eigenfunctions $\psi_j(x)$ and their derivatives are approximated by Nystrom method.

Estimate KL Divergence Derivatives

$$\mathbb{E}_q \left[\nabla_{\phi} \log q_{\phi}(\mathbf{f}^{\mathbf{X}}) \right] + \mathbb{E}_{\xi} \left[\nabla_{\phi} \mathbf{f}^{\mathbf{X}} (\nabla_{\mathbf{f}} \log q(\mathbf{f}^{\mathbf{X}}) - \nabla_{\mathbf{f}} \log p(\mathbf{f}^{\mathbf{X}})) \right].$$

- The first term is zero.
- SSGE estimates the log-density derivatives $\nabla_{\mathbf{f}} \log q(\mathbf{f}^{\mathbf{X}})$, $\nabla_{\mathbf{f}} \log p(\mathbf{f}^{\mathbf{X}})$
- $\nabla_{\mathbf{f}} \log p(\mathbf{f}^{\mathbf{X}})$ is tractable for explicit priors:
 - Gaussian processes
 - Student-t processes

The algorithm

Objective

$$\sum_{(\mathbf{x},y)\in\mathcal{D}_s} \mathrm{E}_{q_{\phi}} \left[\log p(y|f(x)) \right] - \mathrm{KL}[q(\mathbf{f}^M, \mathbf{f}^{\mathcal{D}_s}) || p(\mathbf{f}^{\mathcal{D}_s}, \mathbf{f}^M) \right]$$

Algorithm 1 Functional Variational Bayesian Neural Networks (fBNNs)

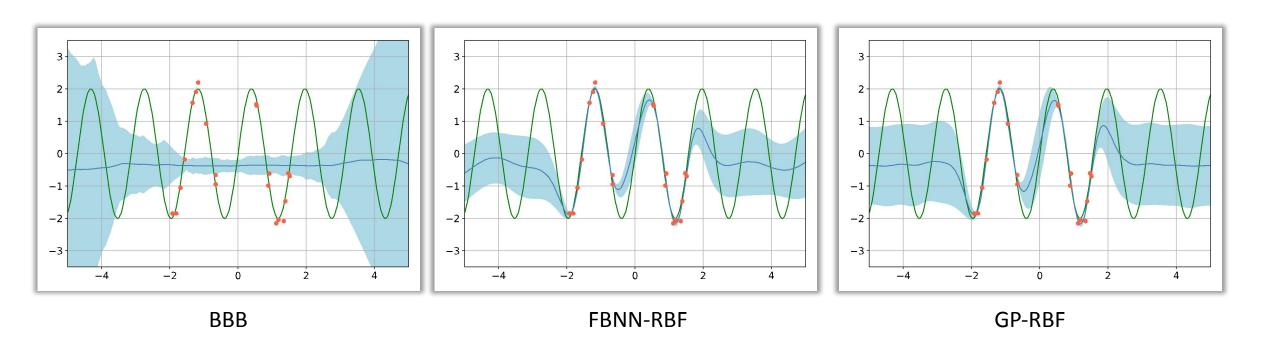
```
Require: Dataset \mathcal{D}, sampling distribution c, variational posterior g(\cdot), prior p (explicit or implicit).
```

```
1: while \phi not converged do
```

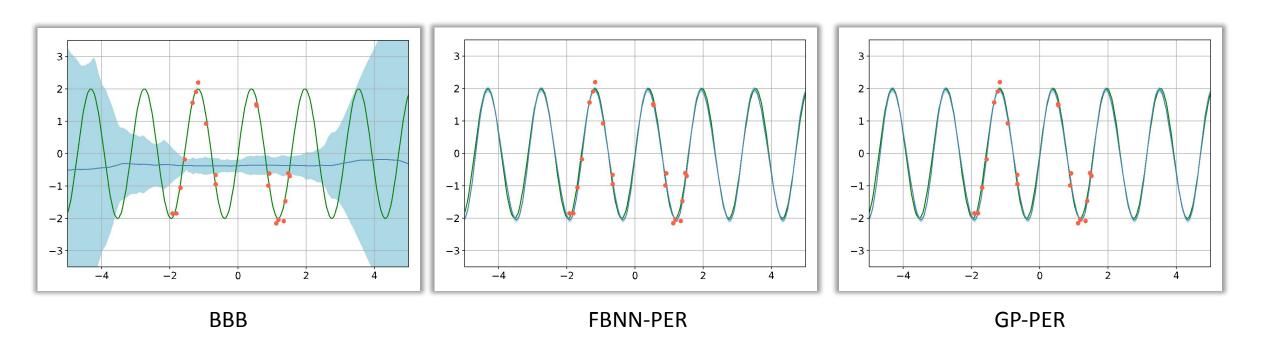
- 2: $\mathbf{X}^M \sim c; D_S \subset \mathcal{D}$
- 3: $\mathbf{f}_i = g([\mathbf{X}^M, \mathbf{X}^{D_S}], \xi_i; \phi), i = 1 \cdots k.$
- 4: $\mathbf{g}_1 = \frac{1}{k} \sum_i \sum_{(x,y)} \nabla_{\phi} \log p(y|\mathbf{f}_i(x))$
- 5: $\mathbf{g}_2 = \mathrm{SSGE}(p, \mathbf{f}_{1:k})$
- 6: $\phi \leftarrow \text{Optimizer}(\phi, \mathbf{g}_1 \mathbf{g}_2)$
- 7: end while

- > sample measurement points
 - \triangleright sample k function values
- - □ update the parameters

Extrapolating Periodic Structures



Extrapolating Periodic Structures



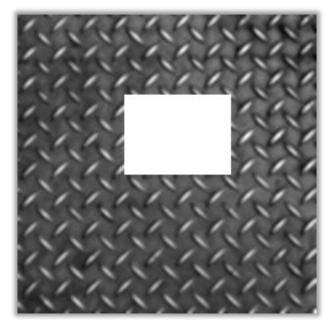
Extrapolating Piecewise Functions

• Implicit Priors

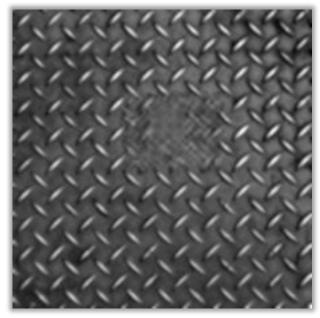


Extrapolating Textures

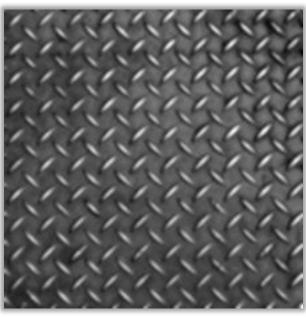
- Large Scale Dataset
- CNN as Generator



Training



FBNN w.o. missing



FBNN w. missing

Predictive Performance

	•	Validation RMSI	Validation log-likelihood			
Dataset	BBB	NNG	Ours	BBB	NNG	Ours
Boston	3.171±0.149	2.742±0.125	2.378±0.104	-2.602±0.031	-2.446±0.029	-2.301±0.038
Concrete	5.678 ± 0.087	5.019 ± 0.127	4.935 ± 0.180	-3.149 ± 0.018	-3.039 ± 0.025	-3.096 ± 0.016
Energy	0.565 ± 0.018	0.485 ± 0.023	0.412 ± 0.017	-1.500 ± 0.006	-1.421 ± 0.005	-0.684 ± 0.020
Wine	0.643 ± 0.012	0.637 ± 0.011	0.673 ± 0.014	-0.977 ± 0.017	-0.969 ± 0.014	-1.040 ± 0.013
Yacht	1.174 ± 0.086	0.979 ± 0.077	0.607 ± 0.068	-2.408 ± 0.007	-2.316 ± 0.006	-1.033 ± 0.033

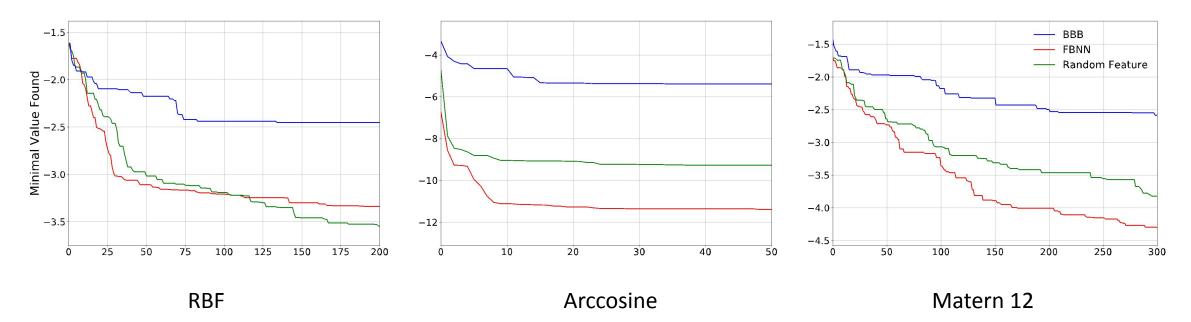
Small Scale regression benchmarks.

		Test RMSE		Test log-likelihood	
Dataset	N	BBB	FBNN	BBB	FBNN
Naval	11934	1.6E-4±0.000	1.2E-4±0.000	6.950±0.052	7.130±0.024
Protein	45730	4.331 ± 0.033	4.326 ± 0.019	-2.892 ± 0.007	-2.892 ± 0.004
Video Memory	68784	1.879 ± 0.265	1.858 ± 0.036	-1.999 ± 0.054	-2.038 ± 0.021
Video Time	68784	3.632 ± 1.974	3.007 ± 0.127	-2.390 ± 0.040	-2.471 ± 0.018
GPU	241600	21.886 ± 0.673	19.50 ± 0.171	-4.505 ± 0.031	-4.400 ± 0.009

Large Scale regression benchmarks.

Bayesian Optimization

- Max-value Entropy Search (Wang & Jegelka, 2017)
- Functions sampled from GPs, varying kernels.
- Compare BBB, RBF Random Feature, FBNN with true kernel
- Requires parametric function samples



Contextual Bandits

- Benchmark on evaluating uncertainty estimation (Riquelme et al., 2018).
- Averaged over 8 datasets, 10 runs each.
- Thompson Sampling
- State-of-art

	FBNN 1×50	FBNN 2×50	FBNN 1×500	FBNN 2×500	MULTITASKGP	BBB 1×50	BBB 1×500
M. RANK	5.875	7.125	4.875	5.0	5.875	11.5	13.375
M. VALUE	46.0	47.0	45.3	44.2	46.5	56.6	68.1
	BBALPHADIV	PARAMNOISE	NEURALLINEAR	LINFULLPOST	DROPOUT	RMS	UNIFORM
M. RANK	BBALPHADIV 16.0	PARAMNOISE 10.125	NEURALLINEAR 10.375	LINFULLPOST 9.25	7.625	RMS 8.875	UNIFORM 16.75

Thanks

Function-Space Inference versus Weight-Space Inference

- What if having a perfect weight prior in accord to a functional prior?
 - It's still better to perform functional inference!
- Deep linear networks: Equivalent p(w) and p(f), Equivalent q(w) and q(f)

$$\mathcal{L}_{w} = \mathbb{E}_{q_{w}} \log p(\mathbf{y}^{\mathcal{D}}|\mathbf{X}^{\mathcal{D}}, \prod_{l=0}^{L-1} \mathbf{W}_{l}) - \text{KL}[q([\mathbf{W}_{0}, \cdots, \mathbf{W}_{L-1}]) \| p([\mathbf{W}_{0}, \cdots, \mathbf{W}_{L-1}])]$$

$$\mathcal{L}_{f} = \mathbb{E}_{q_{f}} \log p(\mathbf{y}^{\mathcal{D}}|\mathbf{X}^{\mathcal{D}}, f) - \text{KL}[q_{f}(f) \| p_{f}(f)]$$

$$= \mathbb{E}_{q_{w}} \log p(\mathbf{y}^{\mathcal{D}}|\mathbf{X}^{\mathcal{D}}, \prod_{l=0}^{L-1} \mathbf{W}_{l}) - \text{KL}[q_{f}(f) \| p_{f}(f)]$$

Theorem [ELBO Ordering]:

$$\mathcal{L}_f \geq \mathcal{L}_w$$