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Overview

e Motivation

e Online memory selection
o Information-theoretic criteria
o An efficient Bayesian model

e Continual learning
o The timing of memory updates
o Information-theoretic Reservoir Sampling (InfoRS)

e Open questions and future works
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Online Memory Selection

e Online Memory Selection is a key ingredient for learning efficiency.
o Continual Learning, Reinforcement Learning, “Sample-Efficient” Learning, ...
e The agent updates both the memory and the model based on the instant observation,

(-/‘97 M) — (./‘97 M, (X*7 y*))

Memory Model

Data Stream



Online Memory Selection

e Challenges
o The purely online constraint calls for both effectiveness and efficiency.

>

o To select a representative memory needs to deal with data imbalance.

1

e Existing Approaches
o Reservoir sampling (RS) ' draws uniform samples in a single pass.

o GSS 2 encourages diversity by minimizing gradient similarities.




Memorable Information Criterion

e We approach the problem from an information-theoretic perspective.

e Consider a Bayesian model p(y|w; X) for the target function,

X W y

e Intuition: incorporating “surprising” data points brings new information to the memory.

Ssurp (X, Yx ); M) = 1og p(Ysu |y M)



Memorable Information Criterion

e Surprising points: “harmful” outliers & “Helpful” unfamiliar points
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Memorable Information Criterion

e We propose the learnability

Slearn((X*a y*)a M) == logp(y*|y*7 YM)
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Memorable Information Criterion

e Surprise

Ssurp((X*a y*)7 M) — logp(y*|YM>

e Learnability

Slearn (X, Ux ); M) = log p(Ys|Yss Y M)

e Memorable Information Criterion (MIC)

MICU((X*a y*)§ M) — nsleam((x*a y*); M) + Ssurp((x*7 y*); M)

n



An Efficient Bayesian Linear Model

e A Bayesian linear model,
y=w' x+¢e,w~N(0,02I),e ~N(0,0%)
e Analytic weight posterior,
p(Wly s X)) = N (A ba, 0 Axy),
A7l = (XLXM -|—CId)_1 by = X/T\,lyM

-1
e The memory buffer can be summarized by the matrix AM and bM :
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An Efficient Bayesian Linear Model

e The MIC can be computed explicitly,
MIC,; (%4, Yu); M) =nlog N (yu|x, A bags+,0°x, Al X + 07)
— log NV (y«|x, A b, 0°x, A Xy + 0?)
e The updated statistics matrices,
T
A_/\/(+ — AM + XX, ,bM+ — bM + Xy UYsx
e The rank-one difference allows to use the Sherman-Morrison formula
—1 T A —1
A xx, Ay
T A —1
1 +x, A, X,

—1 —1
AL = Al

13



Demonstrating the Proposed Criteria

e Algorithm: A greedy algorithm (InfoGS) to replace the informative new point with the
least informative memory point.

e Dataset: pretrained ResNet features for CIFAR-10 classification.

e Problem: Split-CIFAR1O with 5 tasks.
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Demonstrating the Proposed Criteria
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Bayesian Linear Model in Neural Networks

e If the modelis in the following form,

fo(-) = go(hel(-))

e Neural networks are well-known for learning meaningful representations ]’Lg

e We apply the Bayesian linear model from the network feature to the targets.

X he(x) W y
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Continual Learning: the timing to update memory

e Besides how to update the memory, when to update the memory is also important,

Task 1
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Continual Learning: the timing to update memory

e Besides how to update the memory, when to update the memory is also important,

Task 1
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Continual Learning: InfoRS

@ The greedy algorithm updates the memory urgently.
@ Reservoir sampling updates the memory stochastically.

e We propose the Information-theoretic Reservoir Sampling (InfoRS), which combines the
merits of both the information-theoretic criteria and the reservoir sampling.

e InfoRS conducts reservoir sampling over informative points.
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Continual Learning: InfoRS

Algorithm 1 Information-theoretic Reservoir Sampling (InfoRS)

Input: Memory M and matrices A/_V%, b A4, the batch B, the predictor fyg.

Input: The reservoir count n and the budget M.

Input: Running mean and stddev for the MIC: ji;, 5;. The thresholding ratio ;.

Update fg based on M and B 3. // Predictor Update
Update the features for the memory points used in replay, and update Aj’\,%, b o4 accordingly.
for (x,,v,) in B do

if |M| < M or MIC, ((Xy, Yx); M) > f1; + 65 x; // Information Thresholding
pdate M, n <— ReservoirSampling(M, M, n, (x4, ys)). // Memory Update
Update AJ_V}, b a4 based on the Sherman-Morrison formula if M is updated.
Update j1;, 6; using the criterion MIC,, (x4, y«); M). // Running Moments Update

return Buffer M and Aj\,}, b a¢. The reservoir count n and statistics /i;, ;. The updated fg.

20




Continual Learning: Experiments

Dataset: Split-MNIST, Split-CIFAR1O, Split-MinilmageNet.

e Data ImBalance: one specific task are trained R times epochs than other tasks.

e Learning the model: dark experience replay '

e Online memory selection: RS, WRS, InfoGS, InfoRS

21



Continual Learning: Experiments

Test Accuracy

InfoRS improves the robustness over imbalanced data from RS.
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Continual Learning: Experiments

e InfoRS improves the robustness over imbalanced data from RS.
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Continual Learning: Experiments

e InfoRS adapts the speed to incorporate new points based on the informativeness.
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Continual Learning: Experiments

e The computational efficiency,
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Open Questions and Future Directions
e How to improve over uniform sampling for balanced data streams ?
e How to deal with representation shifting along the process ?

e To combine learnability and surprise, is the weighted summation the best, particularly
when the model is misspecified ?

e How does InfoRS perform over other problems: RL, “sample-efficient” learning, ... ?
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Thanks

Information-theoretic algorithms for online memory selection in task-free continual learning,
with improved robustness against data imbalance.
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Bayesian Linear Model in Neural Networks

We assume that the model is in the following form,

fo(-) = go(hel(-))

e Neural networks are well-known for learning meaningful representations ]’Lg

e We apply the Bayesian linear model from the network feature to the targets.
X he(x) w y

How to obtain the features of the memories ?

@ Using the stored features suffer from the representation shifting.

@ Computing the features in each iteration is computationally intensive.
@ Store and update the memory features in experience replay.
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MIC for Memory Points

We can evaluate the memorable information criterion for points in the memory,

o l|et (Xm, ym) be a data point within the memory, define the pseudo-memory,

M*,—m = MU (X*ay*)\(xmaym)

Its MIC is computed with respect to the pseudo-memory,

MICn((Xm, ym); M*,—m)

The MIC for memories is comparable to the MIC for new points,

MIC,, (X4, s ); M) = MIC, (X4, Y ); M, —)
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Learnability + Surprise

e The Information Gain (IG),

KL (p(W]ys, yaMm) [ [p(W ]y am))

e |G can be rewritten as the combination of “learnability” and “surprise” as well.

o (wlys .y ) 108 P(Ys|W)] — log p(ys|y m)

e The prediction gain (PG),

L((X4,Y5);0) — L((X4, )3 0')
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Information-theoretic Criteria

e Entropy Reduction (ER)

ER((x4, yx); M) := Hp(w|M)] = Hlp(w|M, (x,y))]

e Weighted Information Gain (IG)

1Gy (%45 Y ); M) = NEp(wy, .y r) 108 P(Y+|W)] — log p(ys|ym)

e Memorable Information Criterion (MIC)

MIC,, (X4, ¥x); M) = nlog p(y«|ys, Y m) — 1og p(y«|y m)
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Continual Learning: Experiments

Comparing information-theoretic criteria,

Valid Accuracy

0.550

0.525;

—|G1

1 =mm ow |G3

.
-~
~~\
~~

b 3

ER
_— M|C1

- M|C3

1 3 10
Data Imbalance

30

0.26-

0.24;

0.22;

0.20;

0.18;

0.16

0.14

0.12;

1 3 10 30
Data Imbalance

32



Demonstrating the Proposed Criteria
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Continual Learning
Memory Model

Data Stream

e We use dark experience replay ' for learning the model, which optimizes the objective,

LOM)=1B;0)+a ) |fo(xm)—gml3+B > U(m,ym);0)

m=1
fitting loss logit regularization label regularization

"Buzzega et al, 2020 34



Continual Learning: the timing to update memory

e Besides how to update the memory, when to update the memory is also important,
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Continual Learning: Experiments

e InfoRS achieves a more balanced buffer.
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Test Accuracy

e More baselines,
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Continual Learning: Experiments
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Continual Learning: Experiments
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