Information-theoretic Online Memory Selection for Continual Learning

Shengyang Sun, Daniele Calandriello, Clara Huiyi Hu, Ang Li, Michalis Titsias

Online Memory Selection

- Selecting a representative memory is critical to replay-based continual learning methods.
- The agent updates both the memory and the model based on the instant observation,

Online Memory Selection

- Challenges
 - The purely online constraint calls for both effectiveness and efficiency.

• To select a representative memory needs to deal with data imbalance.

• $\mathcal M$ should contain the most information about the underlying function.

Memorable Information Criterion

• Surprise: find "surprising" data points

$$s_{surp}((x_{\star}, y_{\star}); \mathcal{M}) = -\log p(y_{\star}|y_{\mathcal{M}})$$

Memorable Information Criterion

• Learnability: avoid "harmful" outliers

$$s_{\text{learn}}((x_{\star}, y_{\star}); \mathcal{M}) = \log p(y_{\star}|y_{\star}, y_{\mathcal{M}})$$

Memorable Information Criterion

- Surprise finds unfamiliar points.
- Learnability avoids outliers.

Information-theoretic Reservoir Sampling

• InfoRS: a modification of Reservoir Sampling (Vitter, 1985) to select informative points only.

```
Algorithm 1 Information-theoretic Reservoir Sampling (InfoRS)
  1: Input: Memory \mathcal{M} and matrices \mathbf{A}_{\mathcal{M}}^{-1}, \mathbf{b}_{\mathcal{M}}, the batch \mathcal{B}, the predictor parameter \boldsymbol{\theta}.
  2: Input: The reservoir count n and the budget M.
  3: Input: Running mean and stddev for the MIC: \hat{\mu}_i, \hat{\sigma}_i. The thresholding ratio \gamma_i.
  4: Update the predictor parameter \theta based on \mathcal{M} and \mathcal{B}.
  5: Update the features for the memory points used in replay, and update A_{\mathcal{M}}^{-1}, b_{\mathcal{M}} accordingly.
  6: for (\mathbf{x}_{\star}, y_{\star}) in \mathcal{B} do
                                                                                                             // Information Thresholding
          if |\mathcal{M}| < M or \mathrm{MIC}_{\eta}((\mathbf{x}_{\star}, y_{\star}); \mathcal{M}) \geq \hat{\mu}_i + \hat{\sigma}_i * \gamma_i
              Update \mathcal{M}, n \leftarrow \mathbf{ReservoirSampling}(\mathcal{M}, M, n, (\mathbf{x}_{\star}, y_{\star})).
                                                                                                                            // Memory Update
 8:
              Update \mathbf{A}_{\mathcal{M}}^{-1}, \mathbf{b}_{\mathcal{M}} based on the Sherman-Morrison formula if \mathcal{M} is updated.
          Update \hat{\mu}_i, \hat{\sigma}_i using the criterion \mathrm{MIC}_{\eta}((\mathbf{x}_{\star}, y_{\star}); \mathcal{M}).
                                                                                                  // Running Moments Update
11: return Buffer \mathcal{M} and \mathbf{A}_{\mathcal{M}}^{-1}, \mathbf{b}_{\mathcal{M}}. The reservoir count n and statistics \hat{\mu}_i, \hat{\sigma}_i. The updated \boldsymbol{\theta}.
```

Continual Learning Experiments

Improved robustness against data imbalance

Minimal Computational Overhead

Thanks!

Improved robustness against data imbalance in online memory selection