Structured Inter-domain Inducing Points for Variational Gaussian Processes

Shengyang Sun
University of Toronto

Outline

- Background: Inter-domain Inducing Points & Variational Fourier Features
- Harmonic variational Gaussian Processes
- Neural networks as Inter-domain Inducing Points

Gaussian Processes

• Gaussian processes (GPs) are natural generalizations of multivariate Gaussian distributions,

$$f(\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}) \sim \mathcal{N} \left(\mu \left(\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \right), \begin{bmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{bmatrix} \right)$$
 function values \mathbf{f}_X mean kernel matrix \mathbf{K}_{XX}

• Under a Gaussian likelihood, the GP posterior has explicit expressions.

$$\mathbf{f}_{\star}|\mathbf{y} \sim \mathcal{N}\left(\mathbf{K}_{\star\mathbf{X}}\left(\mathbf{K}_{\mathbf{X}\mathbf{X}} + \sigma^{2}\mathbf{I}\right)^{-1}\mathbf{y}, \mathbf{K}_{\star\star} - \mathbf{K}_{\star\mathbf{X}}\left(\mathbf{K}_{\mathbf{X}\mathbf{X}} + \sigma^{2}\mathbf{I}\right)^{-1}\mathbf{K}_{\mathbf{X}\star}\right)$$

Cubic computations

Inducing Points

• Inducing points Z are a small set of points to summarize the dataset in variational GPs¹ (VGPs),

Computational complexities: $\mathcal{O}(N^3) \to \mathcal{O}(M^3)$

Inducing Points

• While the GP model fixes k(X,X), the VGP optimizes Z for approximate posterior.

k(X,X)	k(X,Z)
k(Z,X)	k(Z,Z)

- VGPs can be done as long as the augmented kernel matrix is PSD.
- How to design PSD augmented kernels?

Inter-domain Inducing Points

• A kernel can be characterized as the covariance of a stochastic process

$$k(x,x') \longleftarrow Cov(f(x),f(x'))$$

• Given any function $w: \mathcal{X} \to \mathcal{R}$, an inducing variable is defined as,

$$u_w = \int f(x)w(x)dx$$

• The augmented covariance can be computed as,

$$k(x,w) \longleftrightarrow Cov(f(x), u_w) = \int k(x, x')w(x')dx'$$
$$k(w, w') \longleftrightarrow Cov(u_w, u_{w'}) = \int k(x, x')w(x)w'(x')dxdx'$$

Variational Fourier Features

• A kernel can be characterized as the covariance of a stochastic process

$$k(x,x') \longleftarrow Cov(f(x),f(x'))$$

• Given any function $w: \mathcal{X} \to \mathcal{R}$, an inducing variable is defined as,

$$u_w = \langle f, w \rangle_{\mathcal{H}}$$

• The augmented covariance can be computed as,

$$k(x,w) \longleftrightarrow Cov(f(x), u_w) = \langle k(x,\cdot), w \rangle_{\mathcal{H}} = w(x)$$
$$k(w,w') \longleftrightarrow Cov(u_w, u_{w'}) = \langle w, w' \rangle_{\mathcal{H}}$$

Why Care?

- Accurate posterior inference
 - The Nystrom approximation can be more accurate.

- Computational benefits
 - The kernel matrix k(W, W) can be structured².

• Wider applicable scenarios of kernel methods

Harmonic Variational Gaussian Processes

A simple example

• Given two inputs z_1 , z_2 , we define two inter-domain inducing functions,

$$w_1 = \frac{1}{2}(\delta_{z_1} + \delta_{-z_1})(\cdot)$$
 $w_2 = \frac{1}{2}(\delta_{z_2} - \delta_{-z_2})(\cdot)$

• The augmented kernel,

$$k(w_1, w_2) = \frac{1}{4} \int k(x, x') (\delta_{z_1} + \delta_{-z_1})(x) (\delta_{z_2} - \delta_{-z_2})(x') dx dx'$$

$$= \frac{1}{4} (k(z_1, z_2) - k(z_1, -z_2) + k(-z_1, z_2) - k(-z_1, -z_2))$$

$$= 0$$

If k is invariant to negations: k(x, x') = k(-x, -x')

A simple example

• The kernel matrix k(W, W) is 2x2 block diagonal.

• Two times of inducing points with only two times of computations: $2m^3$ instead of $8m^3$!

Generalizing the simple example

A negative transformation

Kernel is invariant to negations

2 types of inducing points

$$k(x, x') = k(-x, -x')$$

$$\frac{1}{2}\begin{bmatrix}1 & 1\end{bmatrix}$$

T-cyclic transformation G

Kernel is invariant to *G*

$$k(x, x') = k(G(x), G(x'))$$

T types of inducing points

$$\frac{1}{T} \left[e^{-i\frac{2\pi ts}{T}} \right]^{T}$$

$$t,s=1$$

Discrete Fourier Transform (DFT)

Harmonic Kernel Decomposition

• DFT: "time-domain" representations into "frequency-domain" representations,

- HKD: DFT applied to kernels
 - Orthogonal kernel sum decomposition

Harmonic Variational Gaussian Process

• HVGP: a scalable variational GP approximation

 $T \times m$: T types of orthogonal inducing points

Similar to SVGP:

- Large Datasets
- High Dimensional Inputs
- Trainable Inducing Points

Better than SVGP:

- More Inducing Points
- Less Computational Costs
- Easier Parallelisms

Substantial reduction in terms of computational complexities: $\mathcal{O}(T^3m^3) \to \mathcal{O}(Tm^3 + T^2m^2)$

Harmonic Variational Gaussian Process

• HVGP: a scalable variational GP approximation

Substantial reduction in terms of computational complexities: $\mathcal{O}(T^3m^3) \to \mathcal{O}(Tm^3 + T^2m^2)$

High-fidelity GP approximation if the transformation is properly chosen

Performances over Flip-MNIST

Experimental Results

More inducing points

Experimental Results

• Predictive performances & Parallelisms

Experimental Results

Flexible model designs

M	Model	ACC	NLL	sec/iter
384x2, 1K	М	79.01 ± 0.11	0.86 ± 0.00	0.17
	2 M	80.27 ± 0.04	0.81 ± 0.00	0.52
	M+M	79.98 ± 0.21	$0.80 {\pm} 0.01$	0.46
	2xM	80.04 ± 0.04	0.80 ± 0.00	0.37
	4xM	$80.52 {\pm} 0.20$	$\textbf{0.75} {\pm} \textbf{0.01}$	0.37
384x3, 1K	М	82.41±0.08	0.73 ± 0.01	0.40
	2 M	-	-	-
	M+M	83.26 ± 0.19	$0.69 {\pm} 0.01$	1.24
	2xM	$84.97 {\pm} 0.08$	0.60 ± 0.00	0.90
	4xM	84.85±0.11	0.58 ± 0.00	0.90

CIFAR-10 classification via deep convolutional GPs

Future Directions

• Transformations over adaptive manifolds.

• Transformations beyond cyclic groups.

Source: Ouyang et al., 2017

• Expressive kernel learning.

Existing Kernel Perspectives on Neural Networks

Infinite-width neural networks at initialization are Gaussian processes (Neal 92, Lee et al. 18)

Infinite-width neural networks at training are Gaussian processes (NTK, Jacot et al. 18)

- Relies heavily on the infinite-width assumption.
- Ignores the importance of individual weights.
- Performance fails to match NNs with standard training.

Two-layer Neural Network Predictive mean of a Sparse GP $\sigma \left[\begin{array}{c|c} & & & \\ \hline \end{array}\right] x \quad x \quad a \quad$

• We define the variational Fourier feature z_i , $z_i(x) = \sigma(w_i^T x)$. Then,

$$k(x, z_i) = z_i(x) = \sigma(w_i^T x), \qquad k(z_i, z_j) = \langle \sigma(w_i^T \cdot), \sigma(w_j^T \cdot) \rangle_{\mathcal{H}}$$

Two-layer Neural Network

Predictive mean of a Sparse GP

A New Interpretation of finite-width NN:

- Each activation function $\sigma(\cdot; w)$ can be seen as an inter-domain inducing point $k(\cdot; z)$.
- The number of hidden units equals to the number of inducing points.
- A two-layer NN becomes equivalent to the predictive mean of a variational GP.

The variational GP: $f(x) \sim \mathcal{N}(NN(x), \sigma^2(x))$

Performance matches the standard NN

Numerical Experiments

Direct Uncertainty from post-trained NNs

- 1. Train a neural network by standard backprop.
- 2. After training, each hidden unit is an inter-domain inducing point.
- 3. Compute (approximate) predictive variance of the corresponding sparse GP:

$$\sigma^2(\mathbf{x}) = k(\mathbf{x}, \mathbf{x}) - \mathbf{k}_{\mathbf{z}\mathbf{x}}^{\top} \mathbf{K}_{\mathbf{z}\mathbf{z}}^{-1} \mathbf{k}_{\mathbf{z}\mathbf{x}} + \mathbf{k}_{\mathbf{z}\mathbf{x}}^{\top} \mathbf{K}_{\mathbf{z}\mathbf{z}}^{-1} \mathbf{K}_{\mathbf{z}\mathbf{z}}^{-1} \mathbf{k}_{\mathbf{z}\mathbf{x}}$$

$$\approx k(\mathbf{x}, \mathbf{x}) - \mathbf{k}_{\mathbf{z}\mathbf{x}}^{\top} \mathbf{K}_{\mathbf{z}\mathbf{z}}^{-1} \mathbf{k}_{\mathbf{z}\mathbf{x}}$$

• We derived analytic expressions of $k(z_i, z_j)$ for two-layer neural networks.

Numerical Experiments

Numerical Experiments

Uncertainty from post-trained Two-Layer Erf NNs

Deep Neural Networks

- Argument¹: A deep neural network also corresponds to a variational GP.
- Each hidden unit at the second-last layer is an inter-domain inducing point.

• Caveat: The analytic expression of $k(z_i, z_i)$ is generally intractable for deep networks.

Future Directions

- Direct uncertainty from post-trained deep neural networks.
- Generalization bounds for NNs.
- Alternative regularizations in NN training.

$$\left|\frac{1}{n}\sum_{i}l(f(\boldsymbol{x}_{i}),y_{i})-\mathbb{E}_{P}[l(f(\boldsymbol{x}),y)]\right|\leq C_{1}+C_{2}\frac{\|f\|_{\mathscr{H}}^{\alpha}}{n^{\beta}},\quad C_{1},C_{2},\alpha,\beta\geq0$$
 Source: Belkin et al., 2018

Obstacle: accurate & efficient approximations of the kernel $k(z_i, z_j)$.

End Remarks

- This talk covers,
 - Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition (Sun et al., ICML 2021)
 - Neural Networks as Inter-Domain Inducing Points (Sun et al., AABI 2020)
- Careful design of inter-domain inducing points can bring substantial computational savings.
- Inter-domain inducing points provide a promising direction to understand finite neural networks.

References

- Sun, Shengyang, et al. "Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition." *International Conference on Machine Learning*. PMLR. 2021.
- **Sun, Shengyang**, Jiaxin Shi, and Roger Baker Grosse. "Neural Networks as Inter-Domain Inducing Points." Third Symposium on Advances in Approximate Bayesian Inference. 2020.
- Titsias, Michalis. "Variational learning of inducing variables in sparse Gaussian processes." Artificial intelligence and statistics. PMLR, 2009.
- Hensman, James, Alexander Matthews, and Zoubin Ghahramani. "Scalable variational Gaussian process classification." Artificial Intelligence and Statistics. PMLR, 2015.
- Lázaro-Gredilla, Miguel, and Anibal Figueiras-Vidal. "Inter-domain Gaussian processes for sparse inference using inducing features." Advances in Neural Information Processing Systems 22 (2009).
- Hensman, James, Nicolas Durrande, and Arno Solin. "Variational Fourier Features for Gaussian Processes." J. Mach. Learn. Res. 18.1 (2017): 5537-5588.
- Burt, David, Carl Edward Rasmussen, and Mark Van Der Wilk. "Rates of convergence for sparse variational Gaussian process regression." *International Conference on Machine Learning*. PMLR, 2019.
- Dutordoir, Vincent, Nicolas Durrande, and James Hensman. "Sparse Gaussian processes with spherical harmonic features." *International Conference on Machine Learning*. PMLR, 2020.
- Burt, David R., Carl Edward Rasmussen, and Mark van der Wilk. "Variational orthogonal features." arXiv preprint arXiv:2006.13170 (2020).
- Dutordoir, Vincent, et al. "Deep neural networks as point estimates for deep Gaussian processes." Advances in Neural Information Processing Systems 34 (2021).
- Neal, Radford M. Bayesian learning for neural networks. Vol. 118. Springer Science & Business Media, 2012.
- Lee, Jaehoon, et al. "Deep neural networks as gaussian processes." arXiv preprint arXiv:1711.00165 (2017).
- Jacot, Arthur, Franck Gabriel, and Clément Hongler. "Neural tangent kernel: Convergence and generalization in neural networks." Advances in neural information processing systems 31 (2018).

Harmonic Kernel Decomposition

Theorem: orthogonal kernel decomposition

$$k(x, x') = k_0(x, x') + k_1(x, x') + k_2(x, x') + k_3(x, x')$$

Harmonic Kernel Decomposition

• The HKD is an orthogonal decomposition of kernels and RKHSs,

$$k(\mathbf{x}, \mathbf{x}') = \sum_{t=0}^{T-1} k_t(\mathbf{x}, \mathbf{x}')$$
 $\mathcal{H}_k = \bigoplus_{t=0}^{T-1} \mathcal{H}_{k_t}$

• The HKD is widely applicable to many kernels: RBF, Matérn, polynomial, periodic, ...

Kernels k Inner-Product Stationary Stationary Input Space $\mathcal X$ Complex, Real Real Torus Transformation G Rotation, Reflection Negation Translation

Harmonic Variational Gaussian Process

• HVGP: a scalable variational GP approximation

Harmonic Variational Gaussian Process

From kernel decomposition to GP decomposition:

$$f = \sum_{t=0}^{T-1} f_t, \ f_t \sim \mathcal{GP}(0, k_t)$$

• The HVGP introduces an independent variational posterior for each component GP,

$$f = \sum_{t=0}^{T-1} f_t, \ q_t(f_t, \mathbf{u}_t) = p_t(f_t|\mathbf{u}_t)q_t(\mathbf{u}_t)$$

The variational posterior can be optimized by maximizing the ELBO,

$$\mathbb{E}_{q(f_0,...,f_{T-1})} \left\lceil \log \rho \left(\mathbf{y} | \sum_{t=0}^{T-1} f_t, \mathbf{X} \right) \right\rceil - \sum_{t=0}^{T-1} \mathrm{KL} \left(q_t(\mathbf{u}_t) \| \rho_t(\mathbf{u}_t) \right)$$