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• Background: Inter-domain Inducing Points & Variational Fourier Features

• Harmonic variational Gaussian Processes

• Neural networks as Inter-domain Inducing Points
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• Gaussian processes (GPs) are natural generalizations of multivariate Gaussian distributions,

• Under a Gaussian likelihood, the GP posterior has explicit expressions.

Gaussian Processes
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function values 𝐟! mean kernel matrix 𝑲!!

Cubic computations



• Inducing points Z are a small set of points to summarize the dataset in variational GPs1 (VGPs), 

Inducing Points
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M Converged Inducing points

M Initial Inducing points

True posterior vs 
Variational posterior

Computational complexities: 𝒪 𝑁! → 𝒪 𝑀!

[Titsias, 2009]

1[Titsias, 2009; Hensman et. al., 2015] 



• While the GP model fixes 𝑘 𝑋, 𝑋 , the VGP optimizes 𝑍 for approximate posterior.

• VGPs can be done as long as the augmented kernel matrix is PSD.

• How to design PSD augmented kernels? 

Inducing Points
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𝑘(𝑍, 𝑍)𝑘(𝑍, 𝑋)

𝑘(𝑋, 𝑍)𝑘(𝑋, 𝑋)

𝐶

𝐵𝑘(𝑋, 𝑋)

𝐵!



• A kernel can be characterized as the covariance of a stochastic process

• Given any function 𝑤:𝒳 → ℛ, an inducing variable1 is defined as,

• The augmented covariance can be computed as,

Inter-domain Inducing Points
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𝑘(𝑥, 𝑥′) 𝐶𝑜𝑣(𝑓 𝑥 , 𝑓(𝑥′))

𝑢% = ∫ 𝑓 𝑥 𝑤 𝑥 𝑑𝑥

𝐶𝑜𝑣 𝑓 𝑥 , 𝑢% = ∫ 𝑘 𝑥, 𝑥& 𝑤 𝑥& 𝑑𝑥′

𝐶𝑜𝑣 𝑢% , 𝑢%& = ∫ 𝑘 𝑥, 𝑥& 𝑤 𝑥 𝑤& 𝑥& 𝑑𝑥𝑑𝑥′

𝑘(𝑥, 𝑤)

𝑘(𝑤,𝑤′)

𝑘(𝑊,𝑊)𝑘(𝑊, 𝑋)

𝑘(𝑋,𝑊)𝑘(𝑋, 𝑋)

1Lázaro-Gredilla & Figueiras-Vidal, 2009



• A kernel can be characterized as the covariance of a stochastic process

• Given any function 𝑤:𝒳 → ℛ, an inducing variable1 is defined as,

• The augmented covariance can be computed as,

Variational Fourier Features
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𝑘(𝑥, 𝑥′) 𝐶𝑜𝑣(𝑓 𝑥 , 𝑓(𝑥′))

𝑢% =< 𝑓,𝑤 >ℋ

𝐶𝑜𝑣 𝑓 𝑥 , 𝑢% =< 𝑘(𝑥,⋅), 𝑤 >ℋ= 𝑤(𝑥)

𝐶𝑜𝑣 𝑢% , 𝑢%& =< 𝑤,𝑤′ >ℋ

𝑘(𝑥, 𝑤)

𝑘(𝑤,𝑤′)

< 𝑊,𝑊 >ℋ𝑊(𝑋)

𝑊 𝑋 !𝑘(𝑋, 𝑋)

1Hensman et al., 2017



• Accurate posterior inference
• The Nystrom approximation can be more accurate1.

• Computational benefits
• The kernel matrix 𝑘(𝑊,𝑊) can be structured2.

• Wider applicable scenarios of kernel methods

Why Care?

81Burt et al., 2019; 2 Burt et al., 2020; Dutordoir et al., 2020 



Harmonic Variational Gaussian Processes
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• Given two inputs 𝑧&, 𝑧', we define two inter-domain inducing functions,

• The augmented kernel,

A simple example
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𝑤- =
1
2
(𝛿.( + 𝛿/.()(⋅) 𝑤0 =

1
2
(𝛿.) − 𝛿/.))(⋅)

𝑘(𝑤-, 𝑤0) =
1
4
∫ 𝑘 𝑥, 𝑥& 𝛿.( + 𝛿/.( 𝑥 𝛿.) − 𝛿/.) 𝑥& 𝑑𝑥 𝑑𝑥&

=
1
4
(𝑘 𝑧-, 𝑧0 − 𝑘 𝑧-, −𝑧0 + 𝑘 −𝑧-, 𝑧0 − 𝑘 −𝑧-, −𝑧0 )

= 0

If 𝑘 is invariant to negations: 𝑘 𝑥, 𝑥′ = 𝑘(−𝑥,−𝑥′)



• The kernel matrix 𝑘 𝑊,𝑊 is 2x2 block diagonal.

• Two times of inducing points with only two times of computations: 2𝑚* instead of 8𝑚*! 

A simple example
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𝑘"(𝑊",𝑊")0

0𝑘#(𝑊#,𝑊#)𝑚

𝑚



Generalizing the simple example
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A negative transformation

𝑥 −𝑥

Kernel is invariant to negations

𝑘 𝑥, 𝑥′ = 𝑘(−𝑥,−𝑥′)

2 types of inducing points

1
2
1 1
1 −1

𝐺(𝑥)

𝐺!(𝑥)
𝐺"(𝑥)

𝑥

𝑇-cyclic transformation 𝐺

𝑘 𝑥, 𝑥′ = 𝑘(𝐺(𝑥), 𝐺(𝑥+))

𝑇 types of inducing points

1
𝑇
𝑒/6

0789
:

:

8,9;-

Discrete Fourier Transform (DFT)

Kernel is invariant to 𝐺



• DFT: “time-domain” representations into “frequency-domain” representations,

• HKD: DFT applied to kernels
• Orthogonal kernel sum decomposition

Harmonic Kernel Decomposition
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Source: Ritchie Vink

Time-domain Frequency-domain
DFT

inverse DFT

Decomposed Orthogonal Sinusoids



• HVGP: a scalable variational GP approximation

Harmonic Variational Gaussian Process
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Similar to SVGP:
• Large Datasets 
• High Dimensional Inputs
• Trainable Inducing Points

Better than SVGP:
• More Inducing Points
• Less Computational Costs
• Easier Parallelisms

Substantial reduction in terms of computational complexities: 𝒪 𝑇!𝑚! → 𝒪 𝑇𝑚! + 𝑇"𝑚"

𝑘!$#

𝑘%

𝑇×𝑚: 𝑇 types of orthogonal inducing points

𝑚

𝑚

𝑚

𝑚



• HVGP: a scalable variational GP approximation

Harmonic Variational Gaussian Process
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Substantial reduction in terms of computational complexities: 𝒪 𝑇!𝑚! → 𝒪 𝑇𝑚! + 𝑇"𝑚"

High-fidelity GP approximation if the transformation is properly chosen
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Experimental Results
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1K 13x1K

• More inducing points



Experimental Results
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• Predictive performances & Parallelisms



Experimental Results
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• Flexible model designs

CIFAR-10 classification via deep convolutional GPs



• Transformations over adaptive manifolds.

• Transformations beyond cyclic groups.

• Expressive kernel learning.

Future Directions
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Source: Ouyang et al., 2017



HVGP: Orthogonal Inter-domain Inducing Points for Substantial Computational Improvements
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Neural Networks as Inter-domain Inducing Points
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● Relies heavily on the infinite-width assumption.

● Ignores the importance of individual weights.

● Performance fails to match NNs with standard training.

Existing Kernel Perspectives on Neural Networks

Infinite-width neural networks at initialization
are Gaussian processes (Neal 92, Lee et al. 18)

Infinite-width neural networks at training are 
Gaussian processes (NTK, Jacot et al. 18) 
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Neural Networks as Inter-domain Inducing Points

!

" # $ # $

%

&
,

× =

* *
Predictive mean of a Sparse GPTwo-layer Neural Network

𝐾,,-&𝜇
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• We define the variational Fourier feature 𝑧., 𝑧.(𝑥) = 𝜎(𝑤./𝑥). Then,

Neural Networks as Inter-domain Inducing Points

𝑘 𝑥, 𝑧6 = 𝑧6 𝑥 = 𝜎 𝑤6:𝑥 , 𝑘 𝑧6 , 𝑧= =< 𝜎 𝑤6: ⋅ , 𝜎(𝑤=: ⋅) >ℋ

!

" # $ # $

%

&
,

× =

* *
Predictive mean of a Sparse GPTwo-layer Neural Network
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A New Interpretation of finite-width NN:

● Each activation function 𝜎(⋅; 𝑤) can be seen as an inter-domain inducing point 𝑘(⋅; 𝑧).

● The number of hidden units equals to the number of inducing points.

● A two-layer NN becomes equivalent to the predictive mean of a variational GP.

Neural Networks as Inter-domain Inducing Points

!

" # $ # $
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,
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The variational GP: 𝑓 𝑥 ∼ 𝒩(NN 𝑥 , 𝜎'(𝑥))

● Performance matches the standard NN



Numerical Experiments

Direct Uncertainty from post-trained NNs

1. Train a neural network by standard backprop.

2. After training, each hidden unit is an inter-domain inducing point.

3. Compute (approximate) predictive variance of the corresponding sparse GP:
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• We derived analytic expressions of 𝑘(𝑧., 𝑧0) for two-layer neural networks.

Nystrom Approximation Error Inducing Variable Variance



Numerical Experiments

Two-Layer Cosine Network Uncertainty from post-trained NNs
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Numerical Experiments

Uncertainty from post-trained Two-Layer Erf NNs
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Deep Neural Networks

• Argument1: A deep neural network also corresponds to a variational GP.

• Each hidden unit at the second-last layer is an inter-domain inducing point.

• Caveat: The analytic expression of 𝑘 𝑧., 𝑧0 is generally intractable for deep networks.

𝑧#(𝑥)

𝑧"(𝑥)

𝑧!(𝑥)

𝑦

1This is in contrast to Dutordoir et al., 2021 29

NN𝑥



• Direct uncertainty from post-trained deep neural networks.

• Generalization bounds for NNs.

• Alternative regularizations in NN training.

Obstacle: accurate & efficient approximations of the kernel 𝑘 𝑧., 𝑧0 . 

Future Directions
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Source: Belkin et al., 2018



Finite-width neural networks are variational GPs with inter-domain inducing points
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End Remarks

• This talk covers,

• Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition (Sun et al., ICML 2021)

• Neural Networks as Inter-Domain Inducing Points (Sun et al., AABI 2020)

• Careful design of inter-domain inducing points can bring substantial computational savings.

• Inter-domain inducing points provide a promising direction to understand finite neural networks.
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Harmonic Kernel Decomposition
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𝑘 𝑥, 𝑥′

H
K
D

[𝑘1 𝑥, 𝑥+ , 𝑘& 𝑥, 𝑥′ , 𝑘' 𝑥, 𝑥′ , 𝑘* 𝑥, 𝑥′ ]

Theorem: orthogonal kernel decomposition

k 𝑥, 𝑥+ = 𝑘1 𝑥, 𝑥+ + 𝑘& 𝑥, 𝑥′ + 𝑘' 𝑥, 𝑥′ + 𝑘* 𝑥, 𝑥′

−2 −1 0 1 2
−2

−1

0

1

2 t=0

−2 −1 0 1 2

t=1

−2 −1 0 1 2

t=2

−2 −1 0 1 2

t=3



Harmonic Kernel Decomposition
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• The HKD is an orthogonal decomposition of kernels and RKHSs,

• The HKD is widely applicable to many kernels: RBF,  Matérn, polynomial, periodic, …

Harmonic Kernel Decomposition



• HVGP: a scalable variational GP approximation

Harmonic Variational Gaussian Process
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𝑓

𝑓1

…

𝑓/-&

HKD

…

𝑢/-& = 𝑓/-&(z/-&)

𝑢1 = 𝑓1(z1)

Orthogonal inducing points



• HVGP: a scalable variational GP approximation

Harmonic Variational Gaussian Process
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• From kernel decomposition to GP decomposition:

• The HVGP introduces an independent variational posterior for each component GP, 

• The variational posterior can be optimized by maximizing the ELBO,

Harmonic Variational Gaussian Processes


