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Outline

* Background: Inter-domain Inducing Points & Variational Fourier Features

* Harmonic variational Gaussian Processes

* Neural networks as Inter-domain Inducing Points



Gaussian Processes

* Gaussian processes (GPs) are natural generalizations of multivariate Gaussian distributions,
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* Under a Gaussian likelihood, the GP posterior has explicit expressions.
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Inducing Points

* Inducing points Z are a small set of points to summarize the dataset in variational GPs' (VGPs),
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Computational complexities: O (N>) — O(M?3)

Titsias, 2009; Hensman et. al., 2015]



Inducing Points

* While the GP model fixes k(X, X), the VGP optimizes Z for approximate posterior.
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* VGPs can be done as long as the augmented kernel matrix is PSD.

* How to design PSD augmented kernels?



Inter-domain Inducing Points

* A kernel can be characterized as the covariance of a stochastic process

k(x,x") < > Cov(f(x), f(x))

* Given any function w: X’ = R, an inducing variable' is defined as,

* The augmented covariance can be computed as,
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k(X, W)
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> Cov(f(x),uy) = [ k(x, x"w(x")dx’

k(w,w") <«
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1L4zaro-Gredilla & Figueiras-Vidal, 2009 6




Variational Fourier Features

* A kernel can be characterized as the covariance of a stochastic process

k(x,x') =

* Given any function w: X’ = R, an inducing variable' is defined as,

Uy, =< f,w >y

> Cov(f(x), f(x))

k(X,X)

wx)T

* The augmented covariance can be computed as,
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'Hensman et al.,, 2017 7




Why Care?

* Accurate posterior inference
* The Nystrom approximation can be more accurate'.

* Computational benefits
* The kernel matrix k(W, W) can be structured?.

* Wider applicable scenarios of kernel methods

1Burt et al., 2019; ?Burt et al., 2020; Dutordoir et al., 2020 8



Harmonic Variational Gaussian Processes



A simple example

* Given two inputs 71, Z,, we define two inter-domain inducing functions,

1 1
Wi == (8 +6,)0)  wo =58, = 8.,)0)

* The augmented kernel,

k(wy,wy) = % J ke, x")(85, +6_2,)(x)(8,, — 6-5,)(x")dx dx’
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If k is invariant to negations: k(x,x") = k(—x, —x")
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A simple example

* The kernel matrix k(W, W) is 2x2 block diagonal.

" ka (W, Wh) 0

m 0 kz(Wz, Wz)

« Two times of inducing points with only two times of computations: 2m? instead of 8m>!
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Generalizing the simple example

A negative transformation Kernel is invariant to negations 2 types of inducing points
I 1
> AN /
X —x k(x,x") = k(—x,—x") —[ ]
211 —1
T-cyclic transformation G Kernel is invariant to G T types of inducing points
G(x)
X
1 _i2nts r
k(x,x") = k(G(x),G(x")) — [e T ]

t,s=1

G 2
(x) 300 Discrete Fourier Transform (DFT)

12



Harmonic Kernel Decomposition

* DFT:“time-domain” representations into “frequency-domain” representations,

Decomposed Orthogonal Sinusoids

Time-domain™~~__ [~ Frequency-domain

inverse D FT Source: Ritchie Vink

* HKD: DFT applied to kernels

* Orthogonal kernel sum decomposition
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* HVGP: a scalable variational GP approximation

Harmonic Variational Gaussian Process

m kO

Similar to SVGP:

* Large Datasets
* High Dimensional Inputs
* Trainable Inducing Points

Better than SVGP:

* More Inducing Points
* Less Computational Costs
* Easier Parallelisms

Substantial reduction in terms of computational complexities: O (T>m?>) - O(Tm? + T?m?)
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Harmonic Variational Gaussian Process

* HVGP: a scalable variational GP approximation

Substantial reduction in terms of computational complexities: O(T>m?3) — O(Tm3 + T?m?)

High-fidelity GP approximation if the transformation is properly chosen
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Experimental Results

* More inducing points
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Experimental Results

* Predictive performances & Parallelisms

0.9- Y c
o
) [V] S

:1108— 8 % M g04
P e

LU o 0.2
0.6 W
£

0.5 ~ 0.0

0 100 200 300 M
epochs

2M

8xM 8x2M

17



Experimental Results

* Flexible model designs

M Model ACC NLL

sec/iter

M 79.01+£0.11 0.86+0.00

2M  80.27+£0.04 0.81+0.00

384x2, 1K M+M 79.98 £0.21 0.80+0.01
2xM  80.0440.04 0.8040.00

4xM 80.524+0.20 0.75+0.01

0.17
0.52
0.46
0.37
0.37

M 82.41+0.08 0.73£0.01
2M - -
384x3, 1K M+M 83.26+0.19 0.69+0.01
2xM 84.97+0.08 0.60+0.00
4xM  84.85+0.11 0.58+0.00

0.40

1.24
0.90
0.90

CIFAR-10 classification via deep convolutional GPs
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Future Directions

* Transformations over adaptive manifolds.

‘

* Transformations beyond cyclic groups.

Source: Ouyang et al,, 2017
* Expressive kernel learning.
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HVGP: Orthogonal Inter-domain Inducing Points for Substantial Computational Improvements



Neural Networks as Inter-domain Inducing Points



Existing Kernel Perspectives on Neural Networks

Infinite-width neural networks at initialization Infinite-width neural networks at training are
are Gaussian processes (Neal 92, Lee etal. 18) Gaussian processes (NTK, Jacot et al. 18)

e Relies heavily on the infinite-width assumption.
e lgnores the importance of individual weights.

e Performance fails to match NNs with standard training.
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Neural Networks as Inter-domain Inducing Points

Two-layer Neural Network
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Neural Networks as Inter-domain Inducing Points

We define the variational Fourier feature z;, z;(x) = o(w/ x). Then,

k(x,z;) = z;(x) = a(wiTx),

Two-layer Neural Network

T

k(zi,zj) =< O'(WlT -),J(W]-T ) >qr

Predictive mean of a Sparse GP

T
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Neural Networks as Inter-domain Inducing Points

- T
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A New Interpretation of finite-width NN:

The variational GP: / (x) ~ N (NN(x),5%(x))

Each activation function o(-; w) can be seen as an inter-domain inducing point k(-; z).
The number of hidden units equals to the number of inducing points.

A two-layer NN becomes equivalent to the predictive mean of a variational GP.

Performance matches the standard NN
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Numerical Experiments

Direct Uncertainty from NNs
I. Train a neural network by standard backprop.
2. After training, each hidden unit is an inter-domain inducing point.

3. Compute (approximate) predictive variance of the corresponding sparse GP:

02 (X) — k‘(X, X) o k;—sz_zlkZX T k;—xKZ_ZISKz_zlkZX
~ k(x,x) — k, K, 1k,

We derived analytic expressions of k(z;, z;) for two-layer neural networks.



Numerical Experiments

Two-Layer Cosine Network
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Uncertainty from post-trained NNs
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Numerical Experiments

Uncertainty from post-trained Two-Layer Erf NNs
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Deep Neural Networks

* Argument':A deep neural network also corresponds to a variational GP.

* Each hidden unit at the second-last layer is an inter-domain inducing point.

o)
=\
o= Yg’ﬁ

* Caveat: The analytic expression of k(zi,zj) is generally intractable for deep networks.

This is in contrast to Dutordoir et al., 2021 29



Future Directions

* Direct uncertainty from post-trained deep neural networks.
* Generalization bounds for NNs.

 Alternative regularizations in NN training.

/115
nB
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Obstacle: accurate & efficient approximations of the kernel k(zi, Zj).

Y

C1,Co,a,8>0

Source: Belkin et al., 2018
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Finite-width neural networks are variational GPs with inter-domain inducing points



End Remarks

* This talk covers,

* Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition (Sun et al., ICML 2021)

* Neural Networks as Inter-Domain Inducing Points (Sun et al.,, AABI 2020)

* Careful design of inter-domain inducing points can bring substantial computational savings.

* Inter-domain inducing points provide a promising direction to understand finite neural networks.
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Harmonic Kernel Decomposition

k(x,x")

§

[koCx, x), kl(x x'), ko, x7), ks (x, X)]

N

TR

{Theorem: orthogonal kernel decomposition

k(x,x") = ko(e,x") + ki(x,x") + ko (x, x") + k3(x, x")




Harmonic Kernel Decomposition

* The HKD is an orthogonal decomposition of kernels and RKHSs,

T—1 T-1
k(x,x') = Z ki(x,x) Hi = @Hkt
t=0 t=0

* The HKD is widely applicable to many kernels: RBF, Matérn, polynomial, periodic, ...

Kernels k Inner-Product  Stationary Stationary
Input Space X Complex, Real Real Torus
Transformation G Rotation, Reflection Negation Translation
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Harmonic Variational Gaussian Process

* HVGP: a scalable variational GP approximation

Ur—1 = fr-1(zr-1)

HKD Orthogonal inducing points
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Harmonic Variational Gaussian Process

* From kernel decomposition to GP decomposition:
T—1
F=Y fo, fr~GP(0,k)
t=0

 The HVGP introduces an independent variational posterior for each component GP,
T—-1
f= Z fty ae(fe,ur) = pe(felue) g (uy)
t=0

* The variational posterior can be optimized by maximizing the ELBO,

T-1 T-1
Bq(h,....fr0) [logp (y Z ft, X)} - Z KL (ge(ue) | pe(ue))

t=0
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