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Introduction



Probabilistic Machine Learning

Why modeling uncertainty is important?

• Model the data distribution.

- Data is uncertain in nature.

• Calibrate confidence of models.

- They should know when they don’t know.

• Smooth predictions to prevent overfitting.

- Ground truths are usually smooth.
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Bayesian Methods

Bayesian Inference

A mathematically grounded approach to solve for uncertainty.

Example: Bayesian Neural Networks

W ∼ N(0, I),

ŷ = fNN(x,W),

y ∼ P(ŷ; θ).
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Background



Latent Variable Models (LVM)

(a) Local LVMs

p(x1:N , z1:N ) =
∏N
i=1 [p(xi|zi)p(zi)]

(b) Global LVMs

p(x1:N , z) = p(z)
∏N
i=1 p(xi|z)
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Variational Inference (VI)

Consider a generative model p(z,x) = p(z)p(x|z):

• x: observed variables, z: latent variables

• A variational distribution: qφ(z) is chosen to approximate pφ(z|x)

Objective: Evidence Lower BOund (ELBO)

L(x;φ) = Eqφ(z) [log p(x|z)]−KL(qφ(z)‖p(z)).
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Traditional Variational Inference

Approximation: Use a factorized variational family

qφ(z) =

d∏
k=1

qφk(zk),

where z ∈ Rd.

Mean Field Variational Inference:

L(x;φ) = Eqφ(z) [log p(x|z)]−KL(qφ(z)‖p(z)),

∇qL = 0 ⇒ qφk(zk) ∝ eEq(z¬k)[log p(x,z)].

• Analytical, coordinate updates.

• Requires a closed-form solution for each update.
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Modern Variational Inference

Stochastic [5, 9]: Sample a mini-batch of data x1:M from the full dataset

x1:N .

• Global LVMs:

log p(x1:N |z) '
N

M

M∑
i=1

log p(xi|z).

• Local LVMs:

log p(x1:N ) ' N

M

M∑
i=1

log p(xi).
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Modern Variational Inference

Differentiable [17]:

L(x;φ) = Eqφ(z) [log pθ(x|z)]−KL(qφ(z)‖p(z)) ≤ log pθ(x)

• Update variational parameters φ:

φt+1 = φt + α∇φL

• Learning model parameters θ:

θt+1 = θt + α∇θL

• Many gradient estimators have been developed for low-variance

updates of φ: SGVB (the reparameterization trick) [9],

REINFORCE [14], VIMCO [15], REBAR [25], RELAX [1], . . .
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Modern Variational Inference

Amortized: For local LVMs, instead of fitting a variational posterior for

each local variable zi, i = 1, . . . , N , choose a conditional variational family

qφ(z|x) to amortize all the local inference problems:

L(xi;φ) = Eqφ(zi|xi) [log pθ(xi|zi)]−KL(qφ(zi|xi)‖p(zi)) ≤ log pθ(xi)
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Recent Attempts Towards Expressive Posteriors

Matrix Gaussian [12, 23]

p(X |M,U,V) =
exp

(
− 1

2 tr
[
V−1(X−M)TU−1(X−M)

])
(2π)np/2|V|n/2|U|p/2

Normalizing flow [8, 19]

zt = f(zt−1)

q(zt) = q(zt−1)

∣∣∣∣det∂f(zt−1)∂zt−1

∣∣∣∣−1
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Recent Attempts Towards Expressive Posteriors

Implicit distributions [6, 13]

Variational families that can be constructed by using general deterministic

or stochastic transformations, which is not necessarily invertible.

• Known sampling process

• No tractable likelihood

This kind of distribution is called implicit distributions.

Related works include prior-contrastive (PC) [6] for global LVMs, and

Adversarial Variational Bayes (AVB) [13] for local LVMs.
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Implicit Variational Inference

Implicit VI

For variational methods that use an implicit variational posterior (also

known as variational programs [18], wild variational approximations [10]),

we refer to them as Implicit Variational Inference (implicit VI)

Challenge

L(x;φ) = Eqφ(z) [log p(x|z)]−KL(qφ(z)‖p(z)).

Computing KL(qφ(z)‖p(z)) requires to evaluate the density of qφ, which

is intractable for an implicit distribution.
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Implicit VI: Prior-Contrastive Methods

Recently works inspired by the probabilistic interpretation of GAN [4, 16]

has extended the adversarial game approach to variational inference

[13, 6, 24].

Key idea

KL(q‖p) = Eq log
qφ(z)

p(z)

qφ(z)
p(z) can be estimated from samples of the two distributions by using a

probabilistic classifier.

max
D

Eqφ(z) [log (D(z))] + Ep(z) [log (1−D(z))].

The optimal solution of problem is D(z) = qφ(z)/(qφ(z) + p(z)).

Therefore, the KL term can be approximated as

KL(qφ‖p) ≈ Eqφ(z) [logD(z)− log(1−D(z))] .
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Implicit VI: Prior-Contrastive Methods

This is called prior-contrastive (PC) forms of VI in [6]. Its amortized

version has been independently developed as Adversarial Variational

Bayes (AVB) [13].

Problems of discriminator-based approaches

• noisy training due to truncation of inner loop.

• Estimation is of high variance due to overfitting of the strong

discriminator.

• Cannot scale towards very high-dimensional latent variables, e.g.,

weights in a moderate-size neural network.
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Kernel Implicit Variational Inference

Kernel Implicit Variational Inference (KIVI)

A new implicit VI method that utilizes kernel regression in the latent space

to estimate the gradients of the ELBO with an implicit posterior.

Features

• No noisy gradients: closed-form, globally optimal estimate. No

adversarial games.

• Principled control of bias/variance tradeoff.

• Scale to high-dimensional latent-variable models.

• Applicable to both local and global LVMs.

15



Kernel Implicit Variational Inference

Kernel Implicit Variational Inference (KIVI)

A new implicit VI method that utilizes kernel regression in the latent space

to estimate the gradients of the ELBO with an implicit posterior.

Features

• No noisy gradients: closed-form, globally optimal estimate. No

adversarial games.

• Principled control of bias/variance tradeoff.

• Scale to high-dimensional latent-variable models.

• Applicable to both local and global LVMs.

15



Kernel Implicit Variational Inference

Kernel Implicit Variational Inference (KIVI)

A new implicit VI method that utilizes kernel regression in the latent space

to estimate the gradients of the ELBO with an implicit posterior.

Features

• No noisy gradients: closed-form, globally optimal estimate. No

adversarial games.

• Principled control of bias/variance tradeoff.

• Scale to high-dimensional latent-variable models.

• Applicable to both local and global LVMs.

15



Kernel Implicit Variational Inference

Kernel Implicit Variational Inference (KIVI)

A new implicit VI method that utilizes kernel regression in the latent space

to estimate the gradients of the ELBO with an implicit posterior.

Features

• No noisy gradients: closed-form, globally optimal estimate. No

adversarial games.

• Principled control of bias/variance tradeoff.

• Scale to high-dimensional latent-variable models.

• Applicable to both local and global LVMs.

15



Kernel Implicit Variational Inference

Estimating the KL-term

L(x;φ) = Eqφ(z) [log p(x|z)]−KL(qφ(z)‖p(z))

Let z ∈ Rd be the latent variable, and the true density ratio is

r(z) =
q(z)

p(z)
.

Consider modeling it with a function r̂ ∈ H, where H is a Reproducing

Kernel Hilbert Space (RKHS) induced by a positive definite kernel

k(z, z′) : Rd × Rd → R.

Objective composed of 1) a square loss for regression plus 2) a penalty

for the complexity of the function (measured by the RKHS norm ‖r̂‖2H):

min
r̂∈H

L(r̂) + λ

2
‖r̂‖2H.

Here λ is the regularization coefficient.
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KIVI: Estimating the KL-term

Objective min
r̂∈H

L(r̂) + λ

2
‖r̂‖2H.

Squared Loss

• For the squared loss we choose the form used by the unconstrained

Least Square Importance Fitting (uLSIF) [7]:

J (r̂) = 1

2

∫
(r̂(z)− r(z))2p(z) dz =

1

2
Epr̂(z)2 − Eq r̂(z) + C,

where C is a constant.

• Then L(r̂) is defined by the Monte Carlo estimate of J (r̂), using

samples from p and q:

L(r̂) = Ĵ (r̂) = 1

2np

np∑
i=1

r̂(zpi )
2 − 1

nq

nq∑
j=1

r̂(zqj) + C,

zpi ∼ p(z), z
q
j ∼ q(z).
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KIVI: Estimating the KL-term

Objective min
r̂∈H

L(r̂) + λ

2
‖r̂‖2H.

Proposition

The optimal solution of the above equation lies in the linear subspace

spanned by the kernel functions with the samples (zp1:np , z
q
1:nq

) as bases,

i.e., r̂ has the form:

r̂ =

np∑
i=1

αik(z
p
i , ·) +

nq∑
j=1

βjk(z
q
j , ·).

Proof.

This can be seen as the generalization of the representer theorem [20] to

the density ratio problem. So the proof follows the same procedure. See

Appendix.
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KIVI: Estimating the KL-term

Objective min
r̂∈H

L(r̂) + λ

2
‖r̂‖2H.

Plug in the optimal form

r̂ =

np∑
i=1

αik(z
p
i , ·) +

nq∑
j=1

βjk(z
q
j , ·)

and let derivatives to be zeros, we get the optimal solution:

β =
1

λnq
1, α = − 1

λnpnq

(
1

np
Kp + λI

)−1
Kpq1,

where (Kp)i,j = k(zpi , z
p
j ), (Kpq)i,j = k(zpi , z

q
j), and (Kq)i,j = k(zqi , z

q
j).

Note

Kp,Kpq,Kq are submatrices of the Gram matrix formed by zp1:np , z
q
1:nq

:

K =

[
Kp Kpq

KT
pq Kq

]
.
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KIVI: Estimating the KL-term

The reverse ratio trick

J (r̂) = 1

2

∫
(r̂(z)− r(z))2p(z) dz =

1

2
Epr̂(z)2 − Eq r̂(z) + C.

• Key observation: The squared loss Ĵ (r̂) we use puts more weights

into regions where the probability mass of p is high, while KL(q‖p)
chooses q as base measure.

• Solution: Instead of estimating q
p , we choose to estimate p

q and

compute the KL term as

KL(q‖p) = −Eq log
p

q
.

We denote the estimated reverse density ratio as r̂pq, then the

corresponding KL estimate is −Eq log r̂pq.
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KIVI: Gradient Estimation of the KL-term

To estimate the gradient of the KL term w.r.t. variational parameters φ.

First it’s easy to prove as in [6] that

∇φKL(qφ‖p) = −∇φEqφ log
p

qφ
= −∇φEqφ log

p

q
.

Note

The above equation indicates that we can use any approximation of the

density ratio, and the gradients w.r.t. φ won’t change as long as the

approximation is accurate.

Now replace p/q on the right side with r̂pq:

∇φKL(qφ‖p) ≈ −∇φEqφ log r̂pq.

Then, the reparameterization trick [9] can be used:

−∇φEqφ log r̂pq = −Eε∼N(0,I)∇ log r̂pq(z
q(ε;φ)).
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KIVI: The Algorithm

Algorithm 1 Kernel Implicit Variational Inference (KIVI)

Require: Observed data x, model pθ(x|z)p(z).
Require: Implicit variational posterior qφ(z|x), np, nq, M .

1: repeat

2: Sample from prior: zpi ∼ p(z), i = 1, . . . , np.

3: Sample from variational: zqj ∼ q(z|x), j = 1, . . . , nq.

4: Compute the density ratio r̂pq and clip r̂pq to be positive at zqs.

5: Compute L̂ = 1
M

∑M
m=1 log p(x|zqm) + 1

nq

∑nq
j=1 log r̂pq(z

q
j).

6: Estimate ∇φL with the reparameterization trick.

7: Do gradient descent with ∇φL.

8: (Optional) For parameter learning, do gradient descent with ∇θL.

9: until Convergence
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KIVI: Summary

KIVI addresses existing challenges of implicit VI methods.

• The ratio estimates are given in closed-forms, thus not having the

problem of not catching up.

• The bias/variance trade-off of the estimation can be controlled by

the regularization coefficient λ.

• KIVI is directly applicable to both global and local LVMs, which is an

advantage over nonparametric VI methods (e.g., PMD [3] and SGVD

[11]).

Note: Effects of λ

• When λ is set smaller, the estimation is more aggressive to match the

samples.

• When λ is set larger, the estimated ratio function is smoother.

Choosing the appropriate λ, the variance of estimation can be controlled

while maintaining a reasonably good fit.
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Example: Implicit Variational Bayesian Neural Networks

In BNNs, a prior is specified over the neural network parameters

W = {Wl}Ll=1, where Wl indicates weights in the l-th layer. Given input

x, the output y is modeled with

W ∼ N(0, I), ŷ = fNN(x,W), y ∼ P(ŷ; θ), (1)

Dataset: X = {xi}Ni=1,Y = {yi}Ni=1. We have the ELBO:

L(Y,X;φ) = Eqφ(W) log p(Y|X,W)−KL(qφ(W)‖p(W)).

The variational posterior is usually set to be factorized by layer:

qφ(W) =
∏L
l=1 qφl(Wl). Enabled to learn implicit variational posterior,

we propose to adopt a general distribution without an explicit density

function, which has a form of

W0
l ∼ N(0, I), Wq

l = gφl(W
0
l ). (2)
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Example: Implicit Variational Bayesian Neural Networks

W0
l ∼ N(0, I), Wq

l = gφl(W
0
l ). (3)

How to design a flexible and efficient g?

We present Matrix Multiplication Neural Network (MMNN), an efficient

framework for sampling large matrices. Deploying MMNN, KIVI can easily

scale up to large BNNs.
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Example: Implicit Variational Bayesian Neural Networks

Algorithm 2 Matrix Multiplication Neural Network (MMNN)

Require: Input matrix X0

Require: network parameters {Wl
i,B

l
i,W

r
i ,B

r
i }Li=1

1: for i = 1, . . . , L do

2: left multiplication: Xi = Wl
iXi−1 +Bl

i

3: right multiplication: Xi = XiW
r
i +Br

i

4: if i ≤ L− 1 then

5: Xi = Relu (Xi)

6: end if

7: end for

8: Output XL
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Example: Implicit Variational Bayesian Neural Networks

Figure 3: A 2-layer implicit posterior (bias ignored)

To model the implicit posterior of Wl, we only need to randomly sample a

matrix W0
l of smaller size M0 ×N0, and feed it forward through the

MMNN to get the output variational samples (Wq
l ):

W0
l ∼ N(0, I), Wq

l = MMNNφl(W
0
l ). (4)
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Experiments



Experiments: Toy 1-D Gaussian Mixture

(a) VI (normal posterior) (b) KIVI

Figure 4: Fitting Gaussian Mixture distribution
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Experiments: 2-D Bayesian Logistic Regression

w ∼ N(0, I), yi ∼ Bernoulli(σ(wTxi)), i = 1, . . . , N

where w,xi ∈ R2; σ is the sigmoid function. N = 200 data points

({(xi, yi)}200i=1) are generated from the true model as the training data.

(a) Training data (b) True posterior (c) VI (factorized)

(d) HMC (e) KIVI
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Experiments: Bayesian Neural Networks

Regression

Table 1: Average test set RMSE, predictive log-likelihood for the regression

datasets.

Dataset
Avg. Test RMSE Avg. Test LL

SVGD Dropout KIVI SVGD Dropout KIVI

Boston 2.957±0.099 2.97±0.19 2.798±0.173 -2.504±0.029 -2.46±0.06 -2.527±0.102

Concrete 5.324±0.104 5.23±0.12 4.702±0.116 -3.082±0.018 -3.04±0.02 -3.054±0.043

Energy 1.374±0.045 1.66±0.04 0.467±0.015 -1.767±0.024 -1.99±0.02 -1.298±0.005

Kin8nm 0.090±0.001 0.10±0.00 0.075±0.001 0.984±0.008 0.95±0.01 1.162±0.008

Naval 0.004±0.000 0.01±0.00 0.001±0.000 4.089±0.012 3.80±0.01 5.501±0.121

Combined 4.033±0.033 4.02±0.04 3.976±0.037 -2.815±0.008 -2.80±0.01 -2.794±0.009

Protein 4.606±0.013 4.36±0.01 4.255±0.019 -2.947±0.003 -2.89±0.00 -2.868±0.005

Wine 0.609±0.010 0.62±0.01 0.629±0.008 -0.925±0.014 -0.93±0.01 -0.958±0.015

Yacht 0.864±0.052 1.11±0.09 0.737±0.068 -1.225±0.042 -1.55±0.03 -2.123±0.010

Year 8.684±NA 8.849±NA 8.950±NA -3.580±NA -3.588±NA -3.615±NA
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Experiments: Bayesian Neural Networks

Regression

Table 2: Test RMSE, log-likelihood for the regression datasets. Factorized and

NF represent VI with factorized normal posteriors and normalizing flow,

respectively.

RMSE Factorized NF KIVI

boston 3.42±0.19 3.43±0.19 2.80±0.17

concrete 6.00±0.10 6.04±0.10 4.70±0.12

energy 2.42±0.06 2.48±0.09 0.47±0.02

kin8nm 0.09±0.00 0.09±0.00 0.08±0.00

naval 0.01±0.00 0.01±0.00 0.00±0.00

LL Factorized NF KIVI

boston -2.66±0.04 -2.66±0.04 -2.53±0.10

concrete -3.22±0.06 -3.24±0.06 -3.05±0.04

energy -2.34±0.02 -2.36±0.03 -1.30±0.01

kin8nm 0.96±0.01 1.01±0.01 1.16±0.01

naval 4.00±0.11 4.04±0.12 5.50±0.12
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Experiments: Bayesian Neural Networks

Classification
Method # Hidden # Weights Test err.

SGD [21] 800 1.3m 1.6%

Dropout [22] ≈ 1.3%

Dropconnect [26] 800 1.3m 1.2%?

Bayes B. [2], 400 500k 1.82%

with Gaussian posterior 800 1.3m 1.99%

1200 2.4m 2.04%

Bayes B. [2], 400 500k 1.36%?

with scale mixture prior 800 1.3m 1.34%?

1200 2.4m 1.32%?

KIVI 400 500k 1.29%

800 1.3m 1.22%

1200 2.4m 1.27%

Figure 6: Results for MNIST classification. The left table shows the test error

rates. ? indicates results that are not directly comparable to ours: [26] used an

ensemble of 5 networks, and the second part of [2] changed the prior to a scale

mixture. The plot on the right shows training lower bound in MNIST

classification with prior-contrastive (PC) and KIVI.
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Experiments: Variational Autoencoders

MNIST: Overfitting

(a) (b)

Figure 7: Variational Autoencoders: (a) Gaussian posterior vs. implicit

posterior; (b) Training and evaluation curves of the lower bounds on statically

binarized MNIST.
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Experiments: Variational Autoencoders

CelebA: Interpolation

Figure 8: Interpolation experiments for CelebA: AVB (top); KIVI (bottom).
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Experiments: Variational Autoencoders

CelebA: A walk through the training process

(a) AVB

(b) KIVI

Figure 9: Epoch 1
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Experiments: Variational Autoencoders

CelebA: A walk through the training process

(a) AVB

(b) KIVI

Figure 10: Epoch 5
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Experiments: Variational Autoencoders

CelebA: A walk through the training process

(a) AVB

(b) KIVI

Figure 11: Epoch 10
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Experiments: Variational Autoencoders

CelebA: A walk through the training process

(a) AVB

(b) KIVI

Figure 12: Epoch 15
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Experiments: Variational Autoencoders

CelebA: A walk through the training process

(a) AVB

(b) KIVI

Figure 13: Epoch 20

39



Experiments: Variational Autoencoders

CelebA: A walk through the training process

(a) AVB

(b) KIVI

Figure 14: Epoch 25
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Conclusion

We present an implicit variational inference method named Kernel

Implicit Variational Inference (KIVI), which addresses the existing

challenges of implicit VI, including noisy estimation and scalability with

high-dimensional latent variable models.

We successfully apply this approach to Bayesian neural networks and

achieve superior performance on both regression and classification tasks.

We also demonstrate that KIVI can be applied to learn local latent variable

models like VAEs with implicit posteriors successfully.
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Questions?
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