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Bayesian Linear Models
• We are interested at the underlying function     of a problem.   


• To characterize the function, linear models are the simplest,


• Bayesian Linear Regression further characterizes                                                     
the uncertainty with a prior on 



• The prior in Bayesian linear regression enables various plausible explanations, 

Image Courtesy of Roger Grosse, csc2541-f17 

Bayesian Linear Models



From Linear Models to Gaussian Processes
• What if the underlying function cannot be well approximated by a linear model ? 


• Resort to the linear regression on non-linear features of the inputs. 



From Linear Models to Gaussian Processes
• Bayesian linear regression,


• The weight-space prior defines a prior on the function values,


• Consider inputs                       , whose function values                                                   


• Each element of the kernel matrix depends only on the corresponding pair of inputs.



From Linear Models to Gaussian Processes
• The prior on finite sets of function values fully characterizes the distribution.

• Given a kernel function                           , a Gaussian process                is a distribution of 
functions. For any finite set of inputs                      , their function values satisfy a 
multivariate Gaussian distribution,


    Where  


• Gaussian Processes are Bayesian linear regressions on nonlinear feature maps.



Kernels enable flexible Model Design
• Different kernels specify widely varying structures,
•



Kernels enable flexible Model Design
• Kernels can be combined to specify a composite of structures,
•



Kernels enable flexible Model Design
• ECG signals monitor the heart beat, which are generally periodic with variations. 


• For a pregnant patient, the ECG is the composite of the mother’s and the baby’s.

Image Courtesy of Graßhoff et. al., (2020) 



Kernels enable flexible Model Design
• Gaussian processes specify the composite structure easily,


• Inferences for the GP decomposes the composite signals, 

Image Courtesy of Graßhoff et. al., (2020) 



What are ongoing research directions?
• Designing Flexible Kernels


• Deep Kernel Learning, Spectral Mixture Kernels


• Automatic Kernel Selection


• Automatic Statistician, Neural Kernel Network


• The function-space and weight-space contradistinctions


• Neural Tangent Kernel, Neural network Gaussian process


• Gaussian processes for structured spaces


• Convolutional Gaussian processes, graph convolutional Gaussian processes
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GP Predictions from the Posterior
• Given a GP prior               , and a dataset                             from 


• We are interested at inferring the posterior


• The GP posterior can be used for making predictions on testing locations,



• Given a GP prior               , and a dataset                             from 


• We are interested at inferring the posterior


• The GP posterior can be used for making predictions on testing locations,

GP Predictions from the Posterior
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• Consider a multivariate Gaussian,


• The conditional distribution is a multivariate Gaussian,

Conditionals of Multivariate Gaussians



• Under a Gaussian likelihood,


• The posterior is a multivariate Gaussian,


• The “function” posterior             can be seen as a “vector” posterior

GP Posteriors under Gaussian Likelihoods



• Markov Chain Monte Carlo evolves particles according to the unnormalized density,   
whose distribution is the stationary distribution of the Markov Chain.


• How can we update an infinite-dimensional function ?

MCMC for Gaussian Processes



• Markov Chain Monte Carlo evolves particles according to the unnormalized density,   
whose distribution is the stationary distribution of the Markov Chain.


• How can we update an infinite-dimensional function ? 


• Consider a augmented posterior,

MCMC for Gaussian Processes



• Markov Chain Monte Carlo evolves particles according to the unnormalized density,   
whose distribution is the stationary distribution of the Markov Chain.


• How can we update an infinite-dimensional function ? 


• Consider a augmented posterior,


•    is finite-dimensional! MCMC can obtain samples from 


• MCMC is applicable to general likelihoods.

MCMC for Gaussian Processes



• Evolving MCMC particles requires evaluating the unnormalized log probability,


• The exact posterior under Gaussian likelihoods,


• Is it possible to circumvent the cubic computations from matrix inversions ? 

MCMC for Gaussian Processes



• Variational Inference is another class of techniques for approximate posteriors, which 
optimizes a variational posterior by maximizing the Evidence Lower Bound (ELBO),

Variational Inference of GPs



• Variational Inference is another class of techniques for approximate posteriors, which 
optimizes a variational posterior by maximizing the Evidence Lower Bound (ELBO),


• To specify the variational posterior for    , we again consider the augmented space,  


    where the variational posterior is,

Variational Inference of GPs



• To specify the variational posterior for    , we again consider the augmented space,  


   


• Then the ELBO can be rewritten as,

Variational Inference of GPs



• To specify the variational posterior for    , we again consider the augmented space,  


   


• Then the ELBO can be rewritten as,

Variational Inference of GPs

stochastic estimations cubic of n computations

KL between Gaussians: 



• It seems that we can never get around the cubic computations if we deal with   


 

Variational Inference using Inducing Points



• It seems that we can never get around the cubic computations if we deal with   


   


• Instead of                      , we consider                           .            are inducing points 
that try to summarize the dataset.

Variational Inference using Inducing Points

stochastic estimations cubic of m computations



• Stochastic Variational Gaussian Processes (SVGP) [1, 2]

Variational Inference using Inducing Points

Hyper-parameters Variational parameters

Kernels:  Inducing Points

Variational DistributionLikelihoods:  



• SVGP adapts the inducing locations and the variational distributions.

Variational Inference using Inducing Points

Image Courtesy of Titsias (2009)



• More inducing points approximates the true posterior better, without overfitting.

Variational Inference using Inducing Points

Image Courtesy of Bauer et. al., 2016



What are ongoing research directions?
• How to break the             restriction to use more inducing points ?


• Structured inducing points / Inter-domain inducing points


• GPs, State-space models, Dynamic systems 


• Fast Numerical Solvers


• To approximate the model instead of approximate the posterior


• (Structured) Kernel Interpolation


•  Random Fourier Features


• Online posterior inference for GPs


• Streaming sparse GPs
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• We can composite multiple GPs for the connections between several variables.


• Assume the input X affects the output Y via the unobservable variable W, 


• We use two Gaussian processes (blue and red) to model the connections.

The Composite of Gaussian processes

X W Y



• To approximate the posterior distribution                    , we introduce two sets of 
inducing points for two functions,


• The ELBO can be written as,

The Composite of Gaussian processes

X W Y



• Gaussian processes can be composited in any non-cyclic graphical form,


• Each variable can be observable, partially observable, or hidden.

The Composite of Gaussian processes

Image Courtesy of Witty et al., (2020) 



• Previous composite GPs are introduced to match variable relationships.


• Deep Gaussian processes composite a serial of GPs to increase the model flexibility.

Deep Gaussian processes

X W1 YW2 …



What are ongoing research directions?
• How to efficiently characterize posterior correlations between GPs ?


• Global inducing point variational posteriors


• Each GP in the composite usually has multiple outputs. How to design the multi-
output GP and parameterize the multi-output variational posterior ?


• Matrix-variate Gaussian posteriors
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• Data summarization searches for a small set representative of a large dataset


• Lower storage burden, Lower computational costs


• The GP interpretation naturally provides a criterion for data summarization: selecting 
the inducing points for the best posterior approximation. 

Data Summarizations 



Data Summarizations 

Random Points Optimized Inducing Points

Image Courtesy of Titsias et al., (2019) 



• Function-space-distance regularization is an “impractical”golden-standard in continual 
learning, which regularizes the predictor’s outputs on all seen data points.


• The storage constraint allows to keep a small set of points                     , then the 
function-space-distance is approximated by the subsampling estimation.

Function Approximations



• Assume the function is distributed as a Gaussian processes,


• The GP assumption allows to estimate             using            . Specifically, it is 
Gaussian distributed with the mean in the following expression, 


• We can use              to estimate the function-space-distance,

Function Approximations



A small set might contain a lot of information.

How each method responds to the spectral decay of the input distribution?

Function Approximations
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• Can we similarly use inducing points for MCMC ?


• We look at the optimal variational distribution under inducing points.


• The log density of the optimal variational distribution has the expression [3],

MCMC using Inducing Points

stochastic estimations  ? cubic of m computations



• Can we similarly use inducing points for MCMC ?


• We look at the optimal variational distribution under inducing points.


• The log density of the optimal variational distribution has the expression [3],


• We can obtain samples of     using MCMC. 


• How to select/optimize the inducing locations           remains unclear.

MCMC using Inducing Points

stochastic estimations  ? cubic of m computations



Inferences using Inducing Points
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• Can we similarly use inducing points for MCMC ?


• We look at the optimal variational distribution under inducing points.

MCMC using Inducing Points



What are ongoing research directions?
• How to efficiently characterize posterior correlations between GPs ?


• Global inducing point variational posteriors


• Each GP in the composite usually has multiple outputs. How to design the multi-
output GP and parameterize the multi-output variational posterior ?


• Matrix-variate Gaussian posteriors


• Running MCMC with inducing points requires computing the expected log likelihood 
and the KL divergence. For a single GP, the expected log likelihood can be 
approximated using Quadratures. For composite GPs, a serial of expectations are 
involved, how to estimate it accurately, or to enable stochastic estimations ?


• Stochastic Gradient HMC 



• The predictive mean of a variational GP and a two-layer NN have similar expressions,

Connections to Neural Networks 

Predictive mean of Sparse GP

Two-Layer Neural Networks

LinearNonlinear



• Interpreting each hidden unit of the NN as an inter-domain inducing point of the GP,

Connections to Neural Networks 

Predictive mean of Sparse GP

Two-Layer Neural Networks



Connections to Neural Networks 

Generating uncertainty from a pos-trained deterministic neural network


