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Existing Probabilistic Perspectives on Neural Networks

Infinite-width neural networks at initialization are 
Gaussian processes (Neal 92, Lee et al. 18)

Infinite-width neural networks at training are 
Gaussian processes (NTK, Jacot et al. 18) 

● Relies heavily on the infinite-width assumption.

● Ignores the importance of individual weights.

● Performance fails to match NNs with standard training.



Sparse Gaussian Processes

Inducing Points (Z): A small number of inputs summarizing the training data

Sparse GP predictive distribution

(Shi, Titsias, Mnih, 20)



Sparse GPs and Two-Layer NNs
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Nonlinear Linear
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Problem: Activations are not necessarily positive-type functions
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Sparse GPs and Two-Layer NNs

● Inter-domain inducing point

● Variational Fourier Features1 (VFF) generalizes the kernel function 
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Numerical Experiments

Uncertainty from post-trained NNs

1. Train a two-layer neural network by standard backprop.

2. After training, each hidden unit is an inter-domain inducing point.

3. Compute (approximate) predictive variance of the corresponding sparse GP:



Numerical Experiments
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● Multi-layer neural networks

● Convolutional, Recurrent Structures

● How does this framework help us understand neural networks ? 

Future Work
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